
Rani et al., International Journal on Emerging Technologies 11(1): 311-318(2020) 311

International Journal on Emerging Technologies 11(1): 311-318(2020)
ISSN No. (Print): 0975-8364

ISSN No. (Online): 2249-3255

Medical Image Compression using ANN Model

M. Laxmi Prasanna Rani
1
, G. Sasibhushana Rao

2
 and B. Prabhakara Rao

3
1
Assistant Professor, Department of Electronics and Communication Engineering,

MVGR College of Engineering, Vizianagaram (Andhra Pradesh), India.
2
Professor, Department of Electronics and Communication Engineering,

AU College of Engineering (A), Andhra University, Visakhapatnam (Andhra Pradesh), India.
3
Professor, Department of Electronics and Communication Engineering,

JNTUK, Kakinada (Andhra Pradesh), India.

(Corresponding author: M. Laxmi Prasanna Rani)
(Received 01 November 2019, Revised 30 December 2019, Accepted 02 January 2020)

(Published by Research Trend, Website: www.researchtrend.net)

ABSTRACT: The medical images of CT, MRI and PT scan are the digital form of human body pictures. For
storage and successful transmission of these images, there is a need to reduce the size of these images
using dimensionality reduction or compression techniques. Image compression plays an imperative role
within the field of biomedical analysis to save the storage space for the transmission of medical images to
experts for better diagnosis of diseases. The compression of images is achieved using some compression
techniques and obtain the reconstructed image with considerable loss of image quality. However, in medical
applications, high image quality reconstructed image in the region of interest for the diagnosis of critical
diseases is essential. In this paper, Feed Forward Back Propagation Artificial Neural Network (FFBPANN)
model with different back propagation algorithms is used to increase the quality of the image by giving better
compression ratio and less convergence time. This paper discusses the application of the FFBPANN
architecture with Huffman encoding techniques to compress brain MRI images. This network provides more
Peak Signal to Noise Ratio (PSNR), less Mean Squared Error (MSE) for the compression Ratio (CR) of 4:1
using Levenberg–Marquardt back propagation algorithm compared to the gradient and conjugate gradient
training algorithms.

Keywords: Compression, ANN, LM, PSNR, MSE, SSIM.

I. INTRODUCTION

Nowadays, huge data files consisting of images, video
files, etc., are a major hurdle in managing the space in
system. Compression of these images is an essential
process for creating file sizes of the images with
different resolutions which are manageable and
communicable. The file size to store the image is
reduced by decreasing the number of bits per pixel. The
techniques of image compression are most commonly
used in the data storage, printing and
telecommunication industry. Nowadays, digital
applications like high definition television, satellite
remote sensing, fax transmission, etc., use image
compression techniques for better transmission and
storage of data [1].
Acquiring and transmitting huge set of images is
required for diagnosis of the diseases in healthcare
applications, which is now a major field of expansion
due to the technological advancement in medical
electronics. These images have to be stored for
reference and research purposes without placing large
loads on system servers. To save storage space for
these medical images and to send these images to
multiple physicians for diagnosis, compression of these
images is necessary using different types of
compression techniques [2]. At the receiver,
compressed images have to be reconstructed with high
quality without much loss of content in image, whenever
they are needed to be viewed for the diagnosis of
diseases.

The lossy and lossless methods are two approaches to
compress images. Lossy methods provide considerable
loss of quality of images with good compression used in
digital camera, networking, mobiles etc. Lossless
techniques produce better image quality and used in
telemedicine applications, satellite communications, etc.
For compression of these images, there are different
spatial techniques based on the pixel information of
images, transform techniques based on the transform of
images like DCT (Discrete Cosine Transform), DWT
(Discrete Wavelet Transform), various optimization
techniques and training, learning algorithms using
Artificial Neural Networks (ANNs).
ANNs have the ability to acquire more inputs, process
them to reduce hidden and get output by learning and
model non-linear, complex relationships. Hence, ANN
model is used in this paper to provide better image
compression with good quality of reconstructed image.
ANN concept is similar to concept of functioning of
human brain. This network with different weights and
biases can be treated as a replica of a huge number of
neurons in human brain. ANNs function like the human
brain to attain required computational strength [3].
Ahamed and Chandrashekarappa (2014) implements
Artificial Neural Network using Back Propagation
Technique for Compression and Decompression of test
image like lena image [8]. Anusha et al., (2014) explains
the model of Neural Image Compression using Gradient
Decent Technology with weight optimization using
Genetic Algorithm for the images of Lena, Peppers and

e
t

Rani et al., International Journal on Emerging Technologies 11(1): 311-318(2020) 312

boat [13]. Charles et al., (2010) developed an adaptive
method for image compression based on complexity
level of the image and modification on levenberg-
marquardt algorithm for the test image like cameraman
image [16]. This paper presents FFBPANN model with
back propagation algorithms of gradient descent,
conjugate gradient and quasi newton to compress and
to reconstruct of images at the output. The values of
PSNR, MSE, SSIM, etc., obtained using different
training algorithms with different hidden nodes are
compared. The encoding technique of Huffman
encoding is used after hidden layer to get better
compressed output with fewer bits per pixel. The
encoding, simulation, and training times for different
training algorithms are also observed. The organization
of this paper is such that the research method includes
the architecture, functioning of ANN and the
methodology for compression of images with different
training algorithms are explained in section II. Section
III presents results and discussion of different training
algorithms. The conclusions are given in section IV.

II. MATERIALS AND METHODS

Artificial Neural Networks (ANNs): ANNs involve
elementary components operating in parallel. It is
operated similar to the functioning like a human brain.
The novel structure of processing of information is the
vital part of this network. ANNs are used to resolve the
specific problems using interconnected processing
components [3]. The adjustments of the inter
connections existing between the neurons is called
learning in biological systems. Based on learning, there
are many fields such as neurocomputing, parallel
distributed processing, machine learning algorithms,
natural intelligent systems, and artificial neural networks
to solve specific problems.

Fig. 1. Arrangement of ANN with input, hidden and
output layers.

ANN architecture consists of input and output layers
with hidden layer. The elements of each layer are called

neurons/ nodes and these are simulated within
dedicated hardware and sophisticated software [4-5].
The structure of ANN is shown in Fig. 1 below, consists
of one input layer, one output layer, and one hidden
layer. The inputs I1, I2, I3, … Ip of P components given as
neurons to the input layers. The weights WPQ, WQP are
the weights of input and hidden layers respectively. The
components O1, O2, O3,…OP are the reconstructed
outputs from the output layer.
Back Propagation Artificial Neural Network
(BPANN): In this BPANN structure, both the input and
output layers are fully connected via hidden layer [7].
The difference between the actual output and the
targeted output is referred as error. This error is reduced
using back propagation by updating the weights of both
input and hidden layers in backward direction. This
process made the output from the output layer is closer
to the targeted output. Thus this network is used to
reduce the error and produce good compression with
more accuracy [8]. This weight updating process and
the methodology to reduce the error using BPANN
architecture is explained below.
Methodology: The FFBPANNs consists of forward
pass and backward pass throughout the network in
forward and backward directions. The data transmitted
in forward direction through the input and hidden layers
and get actual response at the output layer. The fixed
weights are used at both input, hidden layer during the
forward direction and these are updated during the
backward pass to minimize the error. The output is back
propagated of the network to minimize error by updating
the weights of input and hidden layers. The inputs at
input layer are compressed at the hidden layer
depending on the number of nodes in the hidden layer.
The compression ratio is defined as the ratio of number
of nodes at input layer to the number of nodes at hidden
layer. This output at the hidden layer is encoded with
Huffman method to reduce the number of bits. Thus,
FFBPANNs are used to attain image compression and
decompression. The different back propagation
algorithms are applied to ANN architecture using
various activation functions to get better image
compression [6]. The steps involved in the image
compression and reconstruction using FFBPANN are
shown in Fig. 2.
Image pre-processing: The process getting the
required format of input image from the original image to
the ANN architecture is called preprocessing. Initially,
the image is separated into blocks and each block
consists of 8 × 8 pixels. Each block of 8 × 8 pixels can
be converted into column vector of 64 × 1 elements.
Using normalization process, each pixel value is divided
by 255.
Defining a Network: After preprocessing of an image, it
can be given to the input of the network structure for the
compression of images. The column vector of 64 × 1
elements of each block is applied to the input nodes
from node 1 to node P at input layer and this is input to
neural network. The output can be obtained at output
layer which is reconstructed image. Image compression
is obtained by taking less number of hidden neurons/
nodes (Q) compared to input and output
neurons/nodes(P).

Op O3O1

Input Weights (WPQ)

I3 IP I1 I2

1 2 P 3

1 2 Q

1 2 3 P

Input

layer

Hidden

Layer

Hidden Weights (WQP)

Output

Layer

O2

Rani et al., International Journal on Emerging Technologies 11(1): 311-318(2020) 313

Fig. 2. The procedure involved in the process of compression and reconstruction of images using FFBPANN Model.

The output of hidden layer is the sum of products of
inputs at input layer with their corresponding weights
with non-linear activation function. At hidden layer, the
compressed form of image is obtained. The output of
hidden layer with their respective weights applied to
output layer through the nonlinear activation function to
get decompressed image. The process of compression
of images using ANN model is similar to general image
compression and this network structure is shown in Fig.
3.

Fig. 3. FFBPANN Architecture for image compression
and decompression.

The encoder at the transmitter encodes the output from
the hidden layer using Huffman encoding to reduce the
number of bits and then transmits the encoded output to
the receiver. The receiver receives and decodes the
hidden layer outputs to generate reconstructed outputs.
Each Pixel consists of 8 bits, is fed into each input node
and the same pixels with les number of bits will be the
output after the compression has done. This structure of
ANN changes as the nodes varies from P down to Q of

input to hidden layer respectively to achieve
compression. ANNs, defined above are categorized
either as linear or nonlinear depending upon the
activation function employed at the hidden and output
layers. Generally, Log-sigmoid function of nonlinear is
commonly used as activation function in back
propagation network due to its differentiable property [8-
9]. Generally, nonlinear active functions are used at
hidden layer and linear functions like tangent functions
at the output layer. In general, both linear and nonlinear
problems can be solved by nonlinear transfer functions
than linear ones. The non-linear activation/transfer
function of Log-sigmoid is used at the input of hidden
layer, and the activation function is s given in Eqn. (1).

)exp(1

1
)(

X
Xf

−+
=

(1)

The output bj of jth neuron in the feed forward network
of hidden layer is given by the Eqn. (2).

∑ +=
Q

jiijj cXWhb

1

)(

(2)

where bj is output after input layer with their strength

and weights of respective nodes. h is the activation

function of hidden layer. ijW is the weight of input

nodes. jc is the bias of the hidden layer, and hidden

nodes are Q. The reconstructed output is specified by
the equation given below














+= ∑ kk

p

klk cbWgm

1

(3)

where, km is the actual output at output layer, � is the

activation function at output layer, Wkl is the weight
linking the k

th
 hidden node to the l

th
output node.

ck is

the bias of the k
th
 neuron of the output layer and P is

the number of nodes in the output layer.
Training a Network: After defining and creating ANN
model, this model can be trained with training algorithms

Input Image Divide Image
into Blocks

Decide the no. of
nodes at input, hidden

and output layers

Take input and target
output

Propagate feed forward
neural network different

training algorithms

Define and training
neural network

Adjust the weights of both input and hidden nodes

Reconstructed
image Output

Is error between
actual &

target satisfactory?
Calculate the actual output

Target output

Yes

No

Rani et al., International Journal on Emerging Technologies 11(1): 311-318(2020) 314

by updating input and hidden weights. Input and hidden
weights are chosen randomly.
After selecting the weights, training and learning will
start. Supervised and unsupervised learning are two
methods of learning used to train a network. Supervised
learning provides desired outputs for the respective
inputs providing the network. Unsupervised learning
involve with the inputs and no corresponding output
data [10-11].
Training Algorithms: After the selection of weights,
different training algorithms are used to train a neural
network. BP algorithm is used to make target output is
nearer to actual output by updating weights of the input
and hidden layers respectively. These weights are
updated using the equation given below.

WWW tt δβ+=+ .1

(4)

Where β is the learning coefficient. The value of is
varied to make actual output equal to target output using
different training algorithms [12]. The network is trained
using these algorithms and get the training time and
quality metrics for a given number of training epochs.
The algorithms for the compression are Gradient
Descent algorithms with four training functions,
Conjugate Gradient algorithms with three training
functions and also Quasi-Newton algorithms with three
training functions.
Gradient Descent Algorithms: These algorithms are
implemented based on basic gradient descent algorithm
or steepest descent algorithm [13] and the weights and
biases in the network are updated in the direction of the
negative gradient of the performance function. These
gradient descent algorithms consist of five BP training
methods. They are Gradient Descent (GD), Gradient
Descent with Momentum (GDM), Gradient descent with
adaptive learning rate (GDA), Gradient descent with
momentum and adaptive learning rate (GDX), Resilient
back propagation (RP) methods.
Conjugate Gradient Algorithms: In conjugate gradient
algorithms, weight adjustments are performed along
conjugate directions. Three training methods are Scaled
Conjugate Gradient (SCG), Conjugate Gradient back
propagation with Fletcher-Reeves Updates (CGF),
Conjugate Gradient back propagation with Polak-
Riebre (CGP) Updates of BP [14].
Quasi-Newton Algorithms: In these algorithms, the
Hessian matrix (second derivatives) can be taken as the
current values of the weights and biases. These
algorithms converge faster than conjugate gradient
methods but with complexity because the computation
of Hessian matrix requires more time.
– One Step Secant method (OSS) – The advantage of
this algorithm is that storing of Hessian matrix is not
required. This algorithm takes the identity matrix as
previous Hessian matrix at each and every iteration. It is
like a bridge between conjugate gradient and Quasi
algorithms.
– Broyden Fletcher Goldfarb Shanno (BFGS) method
closer to Newton’s method of hill-climbing optimization
technique which needs a stationary point of a function.
This algorithm requires more storage space and
computational time than the conjugate gradient methods
but reduce the error effectively.

– Levenberg–Marquardt back propagation (LM) based
on the non-linear real-valued functions. The error will be
reduced in every iteration and provides accurate results
after the completion of all iterations. Due to these
features, LM algorithm becomes the fastest and
accurate BP method.
LM Algorithm:
It is used to minimize squared error in each iteration by
training the ANN model. This error [16] is defined in
Eqn. (5).

[]∑ ∑ −= 20()(ijij otWE (5)

Here,],.....,,[21 NwwwW = all weights of the network,

number of weights are denoted by N,
ij

t is the target

output,
ijo is computed value from the trained network.

Initially weights are fixed and they are updated using the
equation given below.

ERQlIRQRQWW K

T
KK

T
KK).(.))().((

1
1

−
+ +−=

(6)

where Q is Jacobian matrix

 t

te
tQ

∂

∂
=

)(
)(=

























∂

∂

∂

∂

∂

∂

∂

∂

m
w

w
M

PR

w

w
M

PR

m
w

wPR

w

wPR

),(

1

),(

),
1

(

1

),
1

(

⋮⋱⋮

⋯

(7)

),(wpR i is the network function, identity matrix I and a

damping factor ‘l’. This method is similar to Gauss-
Newton method for l = 0. For higher values of ‘l’, this
algorithm is modified to Steepest Decent algorithm.
Hence, the value of ‘l’ is, automatically adjusted to get
secure convergence. The steps involved in LM method
[16] are explained in flow chart given in Fig. 4.
In this method, if the learning factor is used to reduce
the error in one iteration, then in the next iteration this
learning factor is divided by some factor and increase
speed to obtain best result. If an increase in error
occurs, then this factor was multiplied by another factor
to get the proper result. So, with selection of proper
values of learning factors, LM method will produce the
best results at phase of reconstruction within a short
period. Therefore, LM method [17] requires the fewer
number of iterations and requirement of memory is also
less than other gradient descent and conjugate
algorithms.
After training this ANN architecture with different training
algorithms explained above, Huffman encoding
technique is used at the output of hidden layer to get
better compression of image size by reducing the
number of bits. This compressed output with weights is
applied to output layer and use of activation function to
get the reconstructed image at the output.
Quality Metrics: The eminence in medical image
compression using neural network is achieved by
evaluating the performance metrics given below.
The quality of the image is represented by MSE is mean
squared difference between original and decompressed
image at the output.

Rani et al., International Journal on Emerging Technologies 11(1): 311-318(2020) 315

Fig. 4. Flow chart for steps in LM Algorithm.

∑ ∑
−

=

−

=
−=

1

0

1

0

2
))),(),(((

1 X

r

Y

s

srBsrA
XY

MSE (8)

Where A(r, s), B(r, s), denotes the input and
decompressed images.
PSNR is the other quality parameter gives the fineness
of images. Better quality of output image is reproduced
with high value of PSNR and less PSNR gives that less
quality of reconstructed image.








 ×
=

MSE
dBPSNR

255255
log10)(10

(9)

Structural Similarity Index Measurement (SSIM)
assesses the quality based on the computation
luminance, the contrast and the structural part of the
image. It gives the perceptual deviation between input
and reconstructed images and predicts the quality of
decompressed image.
The ratio of input neurons (Ni) to hidden neurons (Nh) is
called Compression Ratio (CR) and is defined in Eqn.
(10) [18]

 h

i

N

N
CR =

 (10)

III. RESULTS AND DISCUSSION

The experiments have done using FFBPANN model
with LM training algorithm to get the reconstructed

image at the output. These experiments have done on
MRI of brain images collected from Brats data set of
brain images. In this paper, FFBPANN model is trained
with different training functions of gradient descent,
scaled conjugate gradient, LM and their performances
are compared with respect to PSNR, MSE, and SSIM.
The different training functions are GD, GDM, GDA,
GDX, RP of gradient descent; SCG of conjugate
gradient, and OSS, BFG, LM of quasi newton
algorithms. The network has trained using each training
algorithm for 64 inputs at input layer and with hidden
neurons of 4, 8, and 16 with the compression ratios of
16:1, 8:1, and 4:1 respectively.
By increasing the no. of hidden nodes from 4 to 16,
compression ratio decreased but image quality is
enhanced in terms of more PSNR and SSIM. After the
completion of training, the evaluated metrics are
compared between the training functions and are shown
in Table 1, 2 and 3 respectively. Tables 1 to 3 gives
evaluated metrics of PSNR, MSE, and SSIM for brain
MRI image with block size of 8x8 for the nodes at
hidden layer are 4, 8 and 16 respectively. From results
of LM training method, it is observed that the average
PSNR is better than other algorithms. And the highest
PSNR is obtained for 1000 epochs. MSE values of all
algorithms are observed and from that results LM
algorithm produces less error when compared to others.

Rani et al., International Journal on Emerging Technologies 11(1): 311-318(2020) 316

 From the results, it is also proved that, the LM method
gives more SSIM value compared to other algorithms.
The encoding technique of Huffman encoding used at
hidden nodes to get better compressed output with less
number of bits and different timings of encoding,

simulation, and training are observed and are given in
Table 1, 2 and 3 respectively, for hidden nodes of 4, 8,
16 respectively. The training time for Quasi Newton
algorithms of BFG and LM is more compared to other
algorithms.

Table 1: PSNR, MSE and SSIM and time for encoding, simulation and training using GD, GDM, GDA, GDX,
BFG, RP, OSS, SCG and LM training methods for compression ratio of 16:1.

Training
Algorithm

Training
methods

PSNR

MSE SSIM
Time for

Encoding
(sec)

Time for
Simulation

(sec)

Training
Time
(sec)

Gradient Descent

GD 9.9193 6.624e+03 0.0091 0.3963 0.2072 13.9705

GDM 9.1729
7.8666
e+03

0.0065 0.5440 0.2327 15.6332

GDA 22.8154 340.048 0.7022 0.5672

0.2188

17.2663

GDX 23.2928 304.649 0.7165 0.6138
0.2100

17.2815

RP 23.8199 269.830 0.6863 0.6210
0.2084

18.3927

Conjugate
Gradient

SCG 26.4328 147.842 0.8311 0.6099 0.2035 25.4429

Quasi Newton

OSS 25.7518 172.941 0.7623 0.6004 0.1964 32.5603

BFG 25.3275 190.691 0.7159 0.2940
0.3378

181.9011

LM 27.8585 106.47 0.8473 0.1411 0.1388 248.4495

Table 2: PSNR, MSE, and SSIM and time for encoding, simulation, and training using GD, GDM, GDA, GDX,
BFG, RP, OSS, SCG and LM training methods for compression ratio of 8:1.

Table 3: PSNR, MSE, and SSIM and time for encoding, simulation, and training using GD, GDM, GDA, GDX,
BFG, RP, OSS, SCG, and LM training methods for compression ratio of 4:1.

Training
Algorithm

Training
Functions

PSNR

MSE SSIM
Time for

Encoding
(sec)

Time for
Simulation

(sec)

Training
Time of
network

(sec)

Gradient Descent

GD 13.1370
3.1577e+03

0.0257 0.8121 0.4831 34.9045

GDM 12.5674
3.6003e+03

0.0215 0.3531 0.2124 15.3053

GDA 25.9971

163.4428

0.6004 0.7541 0.4429 18.2446

GDX 26.2514 154.1486 0.7053 0.4545
0.2848

17.1513

RP 27.6033 112.9134 0.8369 0.4614 0.2784 19.0125

Conjugate Gradient SCG 30.1179 63.2828 0.8917 0.7250 0.4320 32.1491

Quasi Newton

OSS 28.2560 97.1575 0.8636 0.7334
0.4465

55.1477

BFG 27.3982 149.0261 0.8180 0.4112 0.2756
9.6360e
+03

LM 31.7083 43.8788 0.9243 18.7625 15.2886 14515

Training
Algorithm

Training
methods

PSNR

MSE SSIM
Time for

Encoding
(sec)

Time for
Simulation

(sec)

Training
Time
(sec)

Gradient Descent

GD 10.9193 5.2621e+03 0.0192 0.3179 0.2521 15.7181

GDM 10.1729 6.2487e+03 0.0121 0.3650 0.3723 14.8978

GDA 25.8154 170.4271 0.7109 0.3354 0.3699

16.7121

GDX 26.2928 152.6868 0.7262 0.3301 0.4148 15.4216

RP 26.5199 144.9085 0.7878 0.3152 0.4220
15.6554

Conjugate
Gradient

SCG 28.1328 79.3960
0.8716

0.3117 0.4123

17.7714

Quasi Newton

OSS 27.2518 122.4343 0.7979 0.2956 0.4147 26.4321

BFG 26.3275 151.4704 0.7176 0.6101 0.1985 1231.7

LM 29.4585 73.6602 0.9087 0.3228 0.0952 2467.7

Rani et al., International Journal on Emerging Technologies 11(1): 311-318(2020) 317

Table 4: Comparison of Huffman encoded bits at input layer (input image) and hidden layer (Compressed
image) with hidden nodes 4, 8, 16, 32 and 64 respectively for LM algorithm.

Hidden Nodes
Huffman encoded bits
at input layer (Input

Image)

Huffman encoded bits
at hidden layer

(Compressed output)
Compression ratio

4

65536 4096 16:1

8 65536 8192 8:1

16 65536 16384 4:1

32 65536 32768 2:1

64 65536 65536 1:1

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 5. (a) Brain MRI image (b) reconstructed image of GD (c) reconstructed image of GDM (d) reconstructed
image of GDA (e) reconstructed image of GDX (f) reconstructed image of RP (g) reconstructed image of SCG (h)
reconstructed image of OSS (i) reconstructed image of BFG (j) reconstructed image of LM training methods with 4:1
compression ratio respectively.

Fig. 6. Graph representing the variation of PSNR values
for GD, GDM, GDA, GDX, BFG, RP, OSS, SCG and LM

training methods with hidden nodes of 4, 8 and 16
respectively.

From results it is proved that LM takes more time for
training compared to other algorithms. By varying the
number of nodes at hidden layer (4, 8, 16, 32 and 64),
the number of Huffman encoded bits at hidden layer
reduces compared with input encoded bits. Hence the
compression ratio is also varied.
Table 4 gives these results. Fig. 5 (a)-(j) represents
input brain MRI image and reconstructed images of
GD, GDM, GDA, GDX, BFG, RP, OSS, SCG, and LM
training methods with hidden nodes of 16 respectively.

Fig. 7. Graph representing the variation of MSE values
for GD, GDM, GDA, GDX, BFG, RP, OSS, SCG, and
LM training methods with hidden nodes of 4, 8 and 16

respectively.

Fig. 8. Variation of SSIM values for GD, GDM, GDA,
GDX, BFG, RP, OSS, SCG, and LM training methods

with hidden nodes of 4, 8 and 16 respectively.

Rani et al., International Journal on Emerging Technologies 11(1): 311-318(2020) 318

Fig. 6, 7 and 8 shows the variation in PSNR, MSE, and
SSIM values of various training methods GD, GDM,
GDA, GDX, BFG, RP, OSS, SCG, and LM of different
training algorithms with hidden nodes of 4, 8, 16
respectively.

IV. CONCLUSION

This paper presents FFBPANN model using LM training
function with Huffman encoding technique for brain MRI
image compression in the region of interest. This
network provides better compression ratio, high PSNR,
and low MSE. These evaluated metrics of PSNR, MSE,
SSIM and encoding, simulation and training time of LM
algorithm is compared with other back propagation
training methods i.e., GD, GDM, GDA, GDX, BFG, RP,
OSS, SCG. From these results, it is concluded that LM
training method of Quasi Newton algorithm reveals
better medical image compression and reconstruct the
original image at the receiver without declining the
quality with high PSNR. However, it consumes more
time for training as it requires Jacobean functions to
reduce error. Finally, it can be concluded that the LM
training method of quasi Newton algorithm with Huffman
encoding provides better compression compared to
gradient descent and conjugate gradient algorithms.

REFERENCES

[1]. Gonzalez, R. C., & Woods, R. E. (2002). Digital
Image Processing Second Edition, 2002 by Prentice-
Hall.
[2]. Ojha, V. K., Abraham, A., & Snášel, V. (2017).
Metaheuristic design of feed forward neural networks: A
review of two decades of research. Engineering
Applications of Artificial Intelligence, 60, 97-116.
[3]. Arunapriya, B., & Devi, D. K. (2010). Image
compression using single layer linear neural
networks. Procedia Computer Science, 2, 345-352.
[4]. Gaidhane, V. H., Singh, V., Hote, Y. V., & Kumar,
M. (2011). New approaches for image compression
using neural network. Journal of Intelligent Learning
Systems and Applications, 3(04), 220-229.
[5]. W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu and F.
Alsaadi (2017). A survey of deep neural network
architectures and their applications. Neuro Computing,
Vol. 234,11-26.
[6]. Kumar, V., Sinha, A. K. & Solanki, A. K. (2019).
Image Inpainting through Textures Synthesis using
Spiking Neural Networks. International Journal on
Emerging Technologies, 10(4), 43-49.

[7]. Panda, S. S., Prasad, M. S. R. S., Prasad, M. N. M.,
& Naidu, C. S. (2012). Image compression using back
propagation neural network. International Journal of
Engineering Science and Advance Technology, 2(1),
74-78.
[8]. Ahamed, S. A., & Chandrashekarappa, K. (2014).
ANN implementation for image compression and
decompression using back propagation
technique. International Journal of Science and
Research (IJSR), 3(6), 1848-1851.
[9]. Srivastava, R., & Singh, O.P. (2015), Lossless
Image Compression Using Neural Network,
International J. of Remote Sensing & Geoscience, 4(3),
39-43.
[10] . Jadhav, P., & Siddesh, G. K. (2018). Bandwidth
oriented Image Compression using Neural Network with
ASAF. International Journal of Neural Networks and
Advanced Applications, 5(3), 25-32.
[11]. Tapase, R. (2016). Neural network based image
compression. International Research Journal of
Engineering and Technology (IRJET), 3(7), 479-482.
[12]. Raghuwanshi, P., Shrivastava, A. (2017). Improved
Image Super Resolution using Sparse codes and Neural
Networks. International Journal of Electrical, Electronics
and Computer Engineering, 6(1), 51-61.
 [13]. Anusha, K., Madhura, G., & Lakshmikantha, S.
(2014). Modeling of neural image compression using
gradient decent technology. IJES of Engineering And
Science, 3(12), 10-17.
[14]. Andrei, N. (2007). Scaled conjugate gradient
algorithms for unconstrained
optimization. Computational Optimization and
Applications, 38(3), 401-416.
[15]. Kumari, S. K. (2017). Implementation and Testing
of Image Compression using Neural network.
International Journal of Research and Development in
Applied Science and Engineering, 14(2), 1-7.
[16]. Charles, P. K., Khan, H., Kumar, C. R., Nikhita, N.,
Roy, S., Harish, V., & Swathi, M. (2010). Artificial Neural
Network based Image Compression using Levenberg-
Marquardt Algorithm. International Journal of Modern
Engineering Research, 1(2), 482-489.
[17]. Gade, M. R. (2014). Image Compression using
Multilayer Feed-Forward Artificial Neural Network with
Levenberg Marquardt . International Journal of
Engineering and Computer Science, 5(2), 15681-15684.
[18]. Amirjanov, A., & Dimililer, K. (2019). Image
compression system with an optimisation of
compression ratio. IET Image Processing, 13(11),
1960-1969.

How to cite this article: Rani, M. Laxmi Prasanna, Rao, G. Sasibhushana and Rao, B. Prabhakara (2020). Medical
Image Compression using ANN Model. International Journal on Emerging Technologies, 11(1): 311–318.

