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ABSTRACT: The medical images of CT, MRI and PT scan are the digital form of human body pictures. For 
storage and successful transmission of these images, there is a need to reduce the size of these images 
using dimensionality reduction or compression techniques. Image compression plays an imperative role 
within the field of biomedical analysis to save the storage space for the transmission of medical images to 
experts for better diagnosis of diseases. The compression of images is achieved using some compression 
techniques and obtain the reconstructed image with considerable loss of image quality. However, in medical 
applications, high image quality reconstructed image in the region of interest for the diagnosis of critical 
diseases is essential. In this paper, Feed Forward Back Propagation Artificial Neural Network (FFBPANN) 
model with different back propagation algorithms is used to increase the quality of the image by giving better 
compression ratio and less convergence time. This paper discusses the application of the FFBPANN 
architecture with Huffman encoding techniques to compress brain MRI images. This network provides more 
Peak Signal to Noise Ratio (PSNR), less Mean Squared Error (MSE) for the compression Ratio (CR) of 4:1 
using Levenberg–Marquardt back propagation algorithm compared to the gradient and conjugate gradient 
training algorithms. 

Keywords: Compression, ANN, LM, PSNR, MSE, SSIM. 

I. INTRODUCTION 

Nowadays, huge data files consisting of images, video 
files, etc., are a major hurdle in managing the space in 
system. Compression of these images is an essential 
process for creating file sizes of the images with 
different resolutions which are manageable and 
communicable. The file size to store the image is 
reduced by decreasing the number of bits per pixel. The 
techniques of image compression are most commonly 
used in the data storage, printing and 
telecommunication industry. Nowadays, digital 
applications like high definition television, satellite 
remote sensing, fax transmission, etc., use image 
compression techniques for better transmission and 
storage of data [1]. 
Acquiring and transmitting huge set of images is 
required for diagnosis of the diseases in healthcare 
applications, which is now a major field of expansion 
due to the technological advancement in medical 
electronics.  These images have to be stored for 
reference and research purposes without placing large 
loads on system servers. To save storage space for 
these medical images and to send these images to 
multiple physicians for diagnosis, compression of these 
images is necessary using different types of 
compression techniques [2]. At the receiver, 
compressed images have to be reconstructed with high 
quality without much loss of content in image, whenever 
they are needed to be viewed  for the diagnosis of 
diseases. 

The lossy and lossless methods are two approaches to 
compress images.  Lossy methods provide considerable 
loss of quality of images with good compression used in 
digital camera, networking, mobiles etc. Lossless 
techniques produce better image quality and used in 
telemedicine applications, satellite communications, etc. 
For compression of these images, there are different 
spatial techniques based on the pixel information of 
images, transform techniques based on the transform of 
images like DCT (Discrete Cosine Transform), DWT 
(Discrete Wavelet Transform), various optimization 
techniques and training, learning  algorithms using 
Artificial Neural Networks (ANNs).  
ANNs have the ability to acquire more inputs, process 
them to reduce hidden and get output by learning and 
model non-linear, complex relationships. Hence, ANN 
model is used in this paper to provide better image 
compression with good quality of reconstructed image. 
ANN concept is similar to concept of functioning of 
human brain.  This network with different weights and 
biases can be treated as a replica of a huge number of 
neurons in human brain. ANNs function like the human 
brain to attain required computational strength [3].  
Ahamed and Chandrashekarappa (2014) implements 
Artificial Neural Network using Back Propagation 
Technique for Compression and Decompression  of test 
image like lena image [8]. Anusha et al., (2014) explains 
the model of Neural Image Compression using Gradient 
Decent Technology with weight optimization using 
Genetic Algorithm for the images of Lena, Peppers and 
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boat [13]. Charles et al., (2010) developed an adaptive 
method for image compression based on complexity 
level of the image and modification on levenberg-
marquardt algorithm for the test image like cameraman 
image [16]. This paper presents FFBPANN model with 
back propagation algorithms of gradient descent, 
conjugate gradient and quasi newton to compress and 
to reconstruct of images at the output. The values of 
PSNR, MSE, SSIM, etc., obtained using different 
training algorithms with different hidden nodes are 
compared. The encoding technique of Huffman 
encoding is used after hidden layer to get better 
compressed output with fewer bits per pixel. The 
encoding, simulation, and training times for different 
training algorithms are also observed. The organization 
of this paper is such that the research method includes 
the architecture, functioning of ANN and the 
methodology for compression of images with different 
training algorithms are explained in section II.  Section 
III presents results and discussion of different training 
algorithms. The conclusions are given in section IV. 

II. MATERIALS AND METHODS 

Artificial Neural Networks (ANNs): ANNs involve 
elementary components operating in parallel. It is 
operated similar to the functioning   like a human brain. 
The novel structure of processing of information is the 
vital part of this network. ANNs are used to resolve the 
specific problems using interconnected processing 
components [3]. The adjustments of the inter 
connections existing between the neurons is called 
learning in biological systems. Based on learning, there 
are many fields such as neurocomputing, parallel 
distributed processing, machine learning algorithms, 
natural intelligent systems, and artificial neural networks 
to solve specific problems.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Arrangement of ANN with input, hidden and 
output layers. 

ANN architecture consists of input and output layers 
with hidden layer. The elements of each layer are called 

neurons/ nodes and these are simulated within 
dedicated hardware and sophisticated software [4-5]. 
The structure of ANN is shown in Fig. 1 below, consists 
of one input layer, one output layer, and one hidden 
layer. The inputs I1, I2, I3, … Ip of P components given as 
neurons to the input layers. The weights WPQ, WQP are 
the weights of input and hidden layers respectively. The 
components O1, O2, O3,…OP are the reconstructed 
outputs from the output layer. 
Back Propagation Artificial Neural Network 
(BPANN): In this BPANN structure, both the input and 
output layers are fully connected via hidden layer [7]. 
The difference between the actual output and the 
targeted output is referred as error. This error is reduced 
using back propagation by updating the weights of both 
input and hidden layers in backward direction. This 
process made the output from the output layer is closer 
to the targeted output. Thus this network is used to 
reduce the error and produce good compression with 
more accuracy [8]. This weight updating process and 
the methodology to reduce the error using BPANN 
architecture is explained below. 
Methodology: The FFBPANNs consists of forward 
pass and backward pass throughout the network in 
forward and backward directions. The data transmitted 
in forward direction through the input and hidden layers 
and get actual response at the output layer. The fixed 
weights are used at both input, hidden layer during the 
forward direction and these are updated during the 
backward pass to minimize the error. The output is back 
propagated of the network to minimize error by updating 
the weights of input and hidden layers.  The inputs at 
input layer are compressed at the hidden layer 
depending on the number of nodes in the hidden layer. 
The compression ratio is defined as the ratio of number 
of nodes at input layer to the number of nodes at hidden 
layer. This output at the hidden layer is encoded with 
Huffman method to reduce the number of bits. Thus, 
FFBPANNs are used to attain image compression and 
decompression. The different back propagation 
algorithms are applied to ANN architecture using 
various activation functions to get better image 
compression [6]. The steps involved in the image 
compression and reconstruction using FFBPANN are 
shown in Fig. 2. 
Image pre-processing: The process getting the 
required format of input image from the original image to 
the ANN architecture is called preprocessing. Initially, 
the image is separated into blocks and each block 
consists of 8 × 8 pixels. Each block of 8 × 8 pixels can 
be converted into column vector of 64 × 1 elements.  
Using normalization process, each pixel value is divided 
by 255. 
Defining a Network: After preprocessing of an image, it 
can be given to the input of the network structure for the 
compression of images. The column vector of 64 × 1 
elements of each block is applied to the input nodes 
from node 1 to node P at input layer and this is input to 
neural network. The output can be obtained at output 
layer which is reconstructed image. Image compression 
is obtained by taking less number of hidden neurons/ 
nodes (Q) compared to input and output 
neurons/nodes(P).  
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Fig. 2. The procedure involved in the process of compression and reconstruction of images using FFBPANN Model. 

The output of hidden layer is the sum of products of 
inputs at input layer with their corresponding weights 
with non-linear activation function. At hidden layer, the 
compressed form of image is obtained. The output of 
hidden layer with their respective weights applied to 
output layer through the nonlinear activation function to 
get decompressed image. The process of compression 
of images using ANN model is similar to general image 
compression and this network structure is shown in Fig. 
3. 

Fig. 3. FFBPANN Architecture for image compression 
and decompression. 

The encoder at the transmitter encodes the output from 
the hidden layer using Huffman encoding to reduce the 
number of bits and then transmits the encoded output to 
the receiver. The receiver receives and decodes the 
hidden layer outputs to generate reconstructed outputs. 
Each Pixel consists of 8 bits, is fed into each input node 
and the same pixels with les number of bits will be the 
output after the compression has done. This structure of 
ANN changes as the nodes varies from P down to Q of 

input to hidden layer respectively to achieve 
compression. ANNs, defined above are categorized 
either as linear or nonlinear depending upon the 
activation function employed at the hidden and output 
layers. Generally, Log-sigmoid function of nonlinear is 
commonly used as activation function in back 
propagation network due to its differentiable property [8-
9]. Generally, nonlinear active functions are used at 
hidden layer and linear functions like tangent functions 
at the output layer. In general, both linear and nonlinear 
problems can be solved by nonlinear transfer functions 
than linear ones. The non-linear activation/transfer 
function of Log-sigmoid is used at the input of hidden 
layer, and the activation function is s given in Eqn. (1). 
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The output bj of jth neuron in the feed forward network 
of hidden layer  is given by the Eqn. (2). 
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where  bj is output after input layer with their strength 

and weights of respective nodes. h  is the activation 

function of hidden layer.  ijW is the weight of input 

nodes. jc is the bias of the hidden layer, and hidden 

nodes are Q. The reconstructed output is specified by 
the equation given below 
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where,  km is the actual output at output layer, �  is the 

activation function at output layer, Wkl is the weight 
linking the k

th
 hidden node to the  l

th 
output node.

  
ck is 

the bias of the k
th
 neuron of the output layer and  P is 

the number of nodes in the output layer. 
Training a Network: After defining and creating ANN 
model, this model can be trained with training algorithms 
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by updating input and hidden weights. Input and hidden 
weights are chosen randomly. 
After selecting the weights, training and learning will 
start. Supervised and unsupervised learning are two 
methods of learning used to train a network. Supervised 
learning provides desired outputs for the respective 
inputs providing the network. Unsupervised learning 
involve with the inputs and no corresponding output 
data [10-11]. 
Training Algorithms: After the selection of weights, 
different training algorithms are used to train a neural 
network. BP algorithm is used to make target output is 
nearer to actual output by updating weights of the input 
and hidden layers respectively. These weights are 
updated using the equation given below. 

                
WWW tt δβ+=+ .1                                         

(4) 

Where β is the learning coefficient. The value of is 
varied to make actual output equal to target output using 
different training algorithms [12]. The network is trained 
using these algorithms and get the training time and 
quality metrics for a given number of training epochs. 
The algorithms for the compression are Gradient 
Descent algorithms with four training functions, 
Conjugate Gradient algorithms with three training 
functions and also Quasi-Newton algorithms with three 
training functions. 
Gradient Descent Algorithms: These algorithms are 
implemented based on basic gradient descent algorithm 
or steepest descent algorithm [13] and the weights and 
biases in the network are updated in the direction of the 
negative gradient of the performance function. These 
gradient descent algorithms consist of five BP training 
methods. They are Gradient Descent (GD), Gradient 
Descent with Momentum  (GDM), Gradient descent with 
adaptive learning rate (GDA), Gradient descent with 
momentum and adaptive learning rate (GDX), Resilient 
back propagation (RP) methods. 
Conjugate Gradient Algorithms: In conjugate gradient 
algorithms, weight adjustments are performed along 
conjugate directions. Three training methods are Scaled 
Conjugate Gradient (SCG), Conjugate Gradient back 
propagation with Fletcher-Reeves Updates (CGF), 
Conjugate Gradient back propagation with Polak- 
Riebre (CGP) Updates of BP [14]. 
Quasi-Newton Algorithms: In these algorithms, the 
Hessian matrix (second derivatives) can be taken as the 
current values of the weights and biases. These 
algorithms converge faster than conjugate gradient 
methods but with complexity because the computation 
of Hessian matrix requires more time. 
– One Step Secant method (OSS) – The advantage of 
this algorithm is that storing of Hessian matrix is not 
required. This algorithm takes the identity matrix as 
previous Hessian matrix at each and every iteration. It is 
like a bridge between conjugate gradient and Quasi 
algorithms.  
– Broyden Fletcher Goldfarb Shanno (BFGS) method 
closer to Newton’s method of hill-climbing optimization 
technique which needs a stationary point of a function. 
This algorithm requires more storage space and 
computational time than the conjugate gradient methods 
but reduce the error effectively. 

– Levenberg–Marquardt back propagation (LM) based 
on the non-linear real-valued functions. The error will be 
reduced in every iteration and provides accurate results 
after the completion of all iterations. Due to these 
features, LM algorithm becomes the fastest and 
accurate BP method. 
LM Algorithm: 
It is used to minimize squared error in each iteration by 
training the ANN model. This error [16] is defined in 
Eqn. (5). 
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Here, ],.....,,[ 21 NwwwW =  all weights of the network, 

number of weights are denoted by N, 
ij

t is the target 

output,  
ijo  is computed value from the trained network. 

Initially weights are fixed and they are updated using the 
equation given below. 
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where Q is Jacobian matrix 
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),( wpR i is the network function, identity matrix I and a 

damping factor ‘l’. This method is similar to Gauss-
Newton method for l = 0.  For higher values of ‘l’, this 
algorithm is modified to Steepest Decent algorithm. 
Hence, the value of ‘l’ is, automatically adjusted to get 
secure convergence. The steps involved in LM method 
[16] are explained in flow chart given in Fig. 4. 
In this method, if the learning factor is used to reduce 
the error in one iteration, then in the next iteration this 
learning factor is divided by some factor and increase 
speed to obtain best result. If an increase in error 
occurs, then this factor was multiplied by another factor 
to get the proper result. So, with selection of proper 
values of learning factors, LM method will produce the 
best results at phase of reconstruction within a short 
period. Therefore, LM method [17] requires the fewer 
number of iterations and requirement of memory is also 
less than other gradient descent and conjugate 
algorithms. 
After training this ANN architecture with different training 
algorithms explained above, Huffman encoding 
technique is used at the output of hidden layer to get 
better compression of image size by reducing the 
number of bits. This compressed output with weights is 
applied to output layer and use of activation function to 
get the reconstructed image at the output. 
Quality Metrics: The eminence in medical image 
compression using neural network is achieved by 
evaluating the performance metrics given below.      
The quality of the image is represented by MSE is mean 
squared difference between original and decompressed 
image at the output. 
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Fig. 4. Flow chart for steps in LM Algorithm. 
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Where A(r, s), B(r, s), denotes the input and 
decompressed images. 
PSNR is the other quality parameter gives the fineness 
of images. Better quality of output image is reproduced 
with high value of PSNR and less PSNR gives that less 
quality of reconstructed image. 
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Structural Similarity Index Measurement (SSIM) 
assesses the quality based on the computation 
luminance, the contrast and the structural part of the 
image. It gives the perceptual deviation between input 
and reconstructed images and predicts the quality of 
decompressed image. 
The ratio of input neurons (Ni) to hidden neurons (Nh) is 
called Compression Ratio (CR) and is defined in Eqn. 
(10) [18] 

 h

i

N

N
CR =

                                                         

 (10) 

III. RESULTS AND DISCUSSION 

The experiments have done using FFBPANN model 
with LM training algorithm to get the reconstructed 

image at the output.  These experiments have done on 
MRI of brain images collected from Brats data set of 
brain images.  In this paper, FFBPANN model is trained 
with different training functions of gradient descent, 
scaled conjugate gradient, LM and their performances 
are compared with respect to PSNR, MSE, and SSIM. 
The different training functions are GD, GDM, GDA, 
GDX, RP of gradient descent; SCG of conjugate 
gradient, and OSS, BFG, LM of quasi newton 
algorithms. The network has trained using each training 
algorithm for 64 inputs at input layer and with hidden 
neurons of 4, 8, and 16 with the compression ratios of 
16:1, 8:1, and 4:1 respectively. 
By increasing the no. of hidden nodes from 4 to 16, 
compression ratio decreased but image quality is 
enhanced in terms of more PSNR and SSIM. After the 
completion of training, the evaluated metrics are 
compared between the training functions and are shown 
in Table 1, 2 and 3 respectively. Tables 1 to 3 gives 
evaluated metrics of PSNR, MSE, and SSIM for brain 
MRI image with block size of 8x8 for the nodes at 
hidden layer are 4, 8 and 16 respectively. From results 
of LM training method, it is observed that the average 
PSNR is better than other algorithms. And the highest 
PSNR is obtained for 1000 epochs. MSE values of all 
algorithms are observed and from that results LM 
algorithm produces less error when compared to others.  
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 From the results, it is also proved that, the LM method 
gives more SSIM value compared to other algorithms. 
The encoding technique of Huffman encoding used at 
hidden nodes to get better compressed output with less 
number of bits and different timings of encoding, 

simulation, and training are observed and are given in 
Table 1, 2 and 3  respectively, for hidden nodes of 4, 8, 
16 respectively. The training time for Quasi Newton 
algorithms of BFG and LM is more compared to other 
algorithms. 

Table 1: PSNR, MSE and SSIM and time for encoding, simulation and training using GD, GDM, GDA, GDX, 
BFG, RP, OSS, SCG and LM training methods for compression ratio of 16:1. 

Training 
Algorithm 

Training 
methods 

PSNR 
 

MSE SSIM 
Time for 

Encoding 
(sec) 

Time for 
Simulation 

(sec) 

Training 
Time 
(sec) 

Gradient Descent 

GD 9.9193 6.624e+03 0.0091 0.3963 0.2072 13.9705 

GDM 9.1729 
7.8666 
e+03 

0.0065 0.5440 0.2327 15.6332 

GDA 22.8154 340.048 0.7022 0.5672 
 

0.2188 
 

17.2663 

GDX 23.2928 304.649 0.7165 0.6138 
0.2100 

 
17.2815 

RP 23.8199 269.830 0.6863 0.6210 
0.2084 

 
18.3927 

Conjugate 
Gradient 

SCG 26.4328 147.842 0.8311 0.6099 0.2035 25.4429 

Quasi Newton 

OSS 25.7518 172.941 0.7623 0.6004 0.1964 32.5603 

BFG 25.3275 190.691 0.7159 0.2940 
0.3378 

 
181.9011 

LM 27.8585 106.47 0.8473 0.1411 0.1388 248.4495 

Table 2: PSNR, MSE, and SSIM and time for encoding, simulation, and training using GD, GDM, GDA, GDX, 
BFG, RP, OSS, SCG and LM training methods for compression ratio of 8:1. 

Table 3: PSNR, MSE, and SSIM and time for encoding, simulation, and training using GD, GDM, GDA, GDX, 
BFG, RP, OSS, SCG, and LM training methods for compression ratio of 4:1. 

Training 
Algorithm 

Training 
Functions 

PSNR 
 

MSE SSIM 
Time for 

Encoding 
(sec) 

Time for 
Simulation 

(sec) 

Training 
Time of 
network 

(sec) 

Gradient Descent 

GD 13.1370 
3.1577e+03 

 
0.0257 0.8121 0.4831 34.9045 

GDM 12.5674 
3.6003e+03 

 
0.0215 0.3531 0.2124 15.3053 

GDA 25.9971 
 

163.4428 
 

0.6004 0.7541 0.4429 18.2446 

GDX 26.2514 154.1486 0.7053 0.4545 
0.2848 

 
17.1513 

RP 27.6033 112.9134 0.8369 0.4614 0.2784 19.0125 

Conjugate Gradient SCG 30.1179 63.2828 0.8917 0.7250 0.4320 32.1491 

Quasi Newton 

OSS 28.2560 97.1575 0.8636 0.7334 
0.4465 

 
55.1477 

BFG 27.3982 149.0261 0.8180 0.4112 0.2756 
9.6360e
+03 

LM 31.7083 43.8788 0.9243 18.7625 15.2886 14515 

Training 
Algorithm 

Training 
methods 

PSNR 
 

MSE SSIM 
Time for 

Encoding 
(sec) 

Time for 
Simulation 

(sec) 

Training 
Time 
(sec) 

Gradient Descent 

GD 10.9193 5.2621e+03 0.0192 0.3179 0.2521 15.7181 

GDM 10.1729 6.2487e+03 0.0121 0.3650 0.3723 14.8978 

GDA 25.8154 170.4271 0.7109 0.3354 0.3699 
 

16.7121 
 

GDX 26.2928 152.6868 0.7262 0.3301 0.4148 15.4216 

RP 26.5199 144.9085 0.7878 0.3152 0.4220 
15.6554 

 

Conjugate 
Gradient 

SCG 28.1328 79.3960 
0.8716 

 
0.3117 0.4123 

17.7714 
 

Quasi Newton 

OSS 27.2518 122.4343 0.7979 0.2956 0.4147 26.4321 

BFG 26.3275 151.4704 0.7176 0.6101 0.1985 1231.7 

LM 29.4585 73.6602 0.9087 0.3228 0.0952 2467.7 
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Table 4: Comparison of Huffman encoded bits at input layer (input image) and hidden layer (Compressed 
image) with hidden nodes 4, 8, 16, 32 and 64 respectively for LM algorithm. 

Hidden  Nodes 
Huffman encoded bits 
at input layer (Input 

Image) 

Huffman encoded bits 
at hidden layer 

(Compressed output) 
Compression ratio 

 
4 

65536 4096 16:1 

8 65536 8192 8:1 

16 65536 16384 4:1 

32 65536 32768 2:1 

64 65536 65536 1:1 

 

     
(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Fig. 5.  (a) Brain MRI image (b) reconstructed image of GD  (c) reconstructed image of GDM  (d) reconstructed 
image of GDA (e) reconstructed image of GDX (f) reconstructed image of RP  (g) reconstructed image of SCG (h) 
reconstructed image of OSS (i) reconstructed image of BFG   (j) reconstructed image of LM training methods with 4:1 
compression ratio respectively. 

 
Fig. 6. Graph representing the variation of PSNR values 
for GD, GDM, GDA, GDX, BFG, RP, OSS, SCG and LM 

training methods  with hidden nodes of 4, 8 and  16  
respectively. 

From results it is proved that LM takes more time for 
training compared to other algorithms. By varying the 
number of nodes at hidden layer (4, 8, 16, 32 and 64), 
the number of Huffman encoded bits at hidden layer 
reduces compared with input encoded bits. Hence the 
compression ratio is also varied.  
Table 4 gives these results. Fig. 5 (a)-(j) represents 
input brain MRI image  and reconstructed images of 
GD, GDM, GDA, GDX, BFG, RP, OSS, SCG, and LM 
training methods with hidden nodes of 16 respectively. 

 
Fig. 7. Graph representing the variation of MSE values 
for GD, GDM, GDA, GDX, BFG, RP, OSS, SCG, and 
LM training methods with hidden nodes of 4, 8 and 16 

respectively. 

 
Fig. 8. Variation of SSIM values for GD, GDM, GDA, 
GDX, BFG, RP, OSS, SCG, and LM training methods 

with hidden nodes of 4, 8 and 16 respectively. 
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Fig. 6, 7 and 8 shows the variation in PSNR, MSE, and 
SSIM values of various training methods GD, GDM, 
GDA, GDX, BFG, RP, OSS, SCG, and LM of different 
training algorithms with hidden nodes of 4, 8, 16 
respectively.  

IV. CONCLUSION 

This paper presents FFBPANN model using LM training 
function with Huffman encoding technique for brain MRI 
image compression in the region of interest. This 
network provides better compression ratio, high PSNR, 
and low MSE.  These evaluated metrics of PSNR, MSE, 
SSIM and encoding, simulation and training time of LM 
algorithm is compared with other back propagation 
training methods i.e., GD, GDM, GDA, GDX, BFG, RP, 
OSS, SCG. From these results, it is concluded that LM 
training method of Quasi Newton algorithm reveals 
better medical image compression and reconstruct the 
original image at the receiver without declining the 
quality with high PSNR. However, it consumes more 
time for training as it requires Jacobean functions to 
reduce error. Finally, it can be concluded that the LM 
training method of quasi Newton algorithm with Huffman 
encoding provides better compression compared to 
gradient descent and conjugate gradient algorithms. 

REFERENCES 

[1]. Gonzalez, R. C., & Woods, R. E. (2002). Digital 
Image Processing Second Edition, 2002 by Prentice-
Hall.  
[2]. Ojha, V. K., Abraham, A., & Snášel, V. (2017). 
Metaheuristic design of feed forward neural networks: A 
review of two decades of research. Engineering 
Applications of Artificial Intelligence, 60, 97-116. 
[3].  Arunapriya, B., & Devi, D. K. (2010). Image 
compression using single layer linear neural 
networks. Procedia Computer Science, 2, 345-352. 
[4].   Gaidhane, V. H., Singh, V., Hote, Y. V., & Kumar, 
M. (2011). New approaches for image compression 
using neural network. Journal of Intelligent Learning 
Systems and Applications, 3(04), 220-229. 
[5].  W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu and F. 
Alsaadi (2017). A survey of deep neural network 
architectures and their applications. Neuro Computing, 
Vol. 234,11-26.  
[6].  Kumar, V., Sinha, A. K. & Solanki, A. K. (2019). 
Image Inpainting through Textures Synthesis using 
Spiking Neural Networks. International Journal on 
Emerging Technologies, 10(4), 43-49. 

[7]. Panda, S. S., Prasad, M. S. R. S., Prasad, M. N. M., 
& Naidu, C. S. (2012). Image compression using back 
propagation neural network. International Journal of 
Engineering Science and Advance Technology, 2(1), 
74-78. 
[8].  Ahamed, S. A., & Chandrashekarappa, K. (2014). 
ANN implementation for image compression and 
decompression using back propagation 
technique. International Journal of Science and 
Research (IJSR), 3(6), 1848-1851. 
[9].   Srivastava, R., & Singh, O.P. (2015), Lossless 
Image Compression Using Neural Network, 
International J. of Remote Sensing & Geoscience, 4(3), 
39-43.  
[10] . Jadhav, P., & Siddesh, G. K. (2018). Bandwidth 
oriented Image Compression using Neural Network with 
ASAF. International Journal of Neural Networks and 
Advanced Applications,  5(3), 25-32. 
[11].  Tapase, R. (2016). Neural network based image 
compression. International Research Journal of 
Engineering and Technology (IRJET), 3(7), 479-482. 
[12]. Raghuwanshi, P., Shrivastava, A. (2017). Improved 
Image Super Resolution using Sparse codes and Neural 
Networks. International Journal of Electrical, Electronics 
and Computer Engineering, 6(1), 51-61. 
 [13].  Anusha, K., Madhura, G., & Lakshmikantha, S. 
(2014). Modeling of neural image compression using 
gradient decent technology. IJES of Engineering And 
Science, 3(12), 10-17. 
[14].  Andrei, N. (2007). Scaled conjugate gradient 
algorithms for unconstrained 
optimization. Computational Optimization and 
Applications, 38(3), 401-416. 
[15]. Kumari, S. K. (2017). Implementation and Testing 
of Image Compression using Neural network.  
International Journal of Research and Development in 
Applied Science and Engineering, 14(2), 1-7.  
[16]. Charles, P. K., Khan, H., Kumar, C. R., Nikhita, N., 
Roy, S., Harish, V., & Swathi, M. (2010). Artificial Neural 
Network based Image Compression using Levenberg-
Marquardt Algorithm. International Journal of Modern 
Engineering Research, 1(2), 482-489. 
[17]. Gade, M. R. (2014).  Image Compression using 
Multilayer Feed-Forward Artificial Neural Network with 
Levenberg Marquardt . International Journal of 
Engineering and Computer Science, 5(2), 15681-15684. 
[18]. Amirjanov, A., & Dimililer, K. (2019). Image 
compression system with an optimisation of 
compression ratio.  IET Image Processing, 13(11), 
1960-1969. 

 
 

How to cite this article: Rani, M. Laxmi Prasanna, Rao, G. Sasibhushana and Rao, B. Prabhakara (2020). Medical 
Image Compression using ANN Model. International Journal on Emerging Technologies, 11(1): 311–318. 
 


